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Cooperative dynamics of three-component water-oil-surfactant microemulsions based on sodium bis~2-
ethylhexyl! sulfosuccinate surfactant were investigated near the percolation threshold. The measurements were
made by means of the time domain dielectric spectroscopy method in the temperature interval 12 °C–40 °C,
including the percolation range. The data treatment was carried out in time domain in terms of the macroscopic
dipole correlation functions~DCFs! related to the structural and kinetic properties of the system. It is shown
that the DCF can be described by the Kohlrausch-Williams-Watts~KWW! expression exp@2~t/t!n# ~wheret is
the relaxation time andn is the stretched parameter!, reflecting the peculiarities of the dipole interactions in a
self-similar medium. For a physical interpretation of the phenomenological parameterst andn, a generaliza-
tion of the known model of the cooperative relaxation was made. The model developed was adjusted for a
description of the relaxation in microemulsions that have a fractal nature in the percolation region. The results
obtained testify that parameterst andn in the KWW function are related to the structure of the system and
reflect the cooperative behavior of microemulsion droplets near the percolation threshold. It was shown also
that the macroscopic law of the relaxation of the KWW type is insensitive to the microscopic details of charge
transport in the system and that there is a limited temporal range for the applicability of the stretched law of
relaxation in time domain. In order to extend the initial temporal interval of the applicability of the relaxation
function the correlation to the KWW term was found.@S1063-651X~96!09511-6#

PACS number~s!: 82.70.2y, 77.22.Gm, 05.40.1j

I. INTRODUCTION

A percolation phenomenon was found in the microemul-
sions when the water fraction, the temperature, the pressure,
or the ratio of water to the surfactant was varied@1–7#. In
our recent paper@1#, the dielectric relaxation properties in the
sodium bis~2-ethylhexyl! sulfosuccinate ~AOT! -water-
decane microemulsion have been investigated in the broad
temperature region near the percolation temperature thresh-
old. It was found that the system exhibits a complex nonex-
ponential relaxation behavior that is strongly dependent on
the temperature. Below the percolation onset where the mi-
croemulsion has a structure of spherical droplets, the main
contribution in the relaxation mechanism comes from the
fast relaxation processeswith characteristic relaxation times
less than 1 ns. The processes are inherent to the dynamics of
the single droplet components as well as to the effect of
interfacial polarization. In the percolation region transient
clusters of a fractal nature are formed because of attractive
interactions between droplets@8,9#. In this region an inter-
pretation of the results was done in the framework of the
dynamic percolation model@10#. According to this model
near the percolation threshold, in addition to the fast relax-
ation related to the dynamics of droplet components and in-
terfacial polarization, there are at least two much longer
characteristic time scales. Thelongest processhas character-
istic relaxation times greater than a few microseconds@9,11#
and should be associated with the rearrangements of the typi-
cal percolation cluster@9–11#. The temporal window of the
intermediate processis a function of temperature. The mini-
mal time boundaries are of the order of hundreds of picosec-

onds, whereas the maximal time has a value of tens of nano-
seconds in the beginning of the percolation region and may
reach 700 ns at the percolation threshold@1#. Such an inter-
mediate process reflects the cooperative relaxation phenom-
enon associated with the transfer of excitation along the per-
colation cluster. The excitation is caused by the transport of
charge carriers that leads to a variation of the fluctuation
dipole moment of droplets@12–14#.

The time decay behavior of the dipole correlation function
of the system was deconvoluted into normal modes and rep-
resented as a sum of two Kohlrausch-Williams-Watts
~KWW! terms exp@2(t/tM)

n#, each with characteristic mac-
roscopic relaxation timestM and stretched exponentsn, re-
spectively@1#. Many efforts have been made to interpret the
experimental results in terms of fractal and dispersion dielec-
tric theories, in order to provide the theoretical justification
of experimental results. However, the study has left no clear
information about the details of possible mechanisms of co-
operative relaxation, the physical meaning of the phenom-
enological parameterstM andn, and/or knowledge with re-
gard to the temporal range of the KWW relaxation where the
stretched exponential behavior can be correctly applied. In
view of this, the question arises as to the fractal nature of the
relaxation and the mechanisms responsible for the aforemen-
tioned relaxation times. It is natural to suppose that near the
percolation threshold the main contribution to the dynamics
comes from the cooperative effect related to the transfer of
charge carriers along the percolation clusters.

The purpose of this work is to further investigate the frac-
tal dynamics of thecooperative relaxationprocess in micro-
emulsions near the percolation threshold. In the paper we
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shall review the existing models of cooperative relaxation
and develop the model of cooperative relaxation in self-
similar media. It will be shown that for the cooperative effect
of relaxation the macroscopic law of the KWW relaxation is
insensitive to the microscopic details of charge transport in
the system and there is a limited temporal range for applica-
bility of the stretched law for the cooperative process of the
relaxation in time domain. From the experimental dipole cor-
relation function we shall obtain the main parameters of the
model and reveal the physical meaning of the stretched ex-
ponentn and the characteristic relaxation timetM entering in
the KWW decay behavior of the correlation functions. The
model is shown to be capable of offering information on the
fractal nature and structural changes occurring in the micro-
emulsion near the percolation threshold.

II. THEORETICAL BACKGROUND

For a description of the mechanism of cooperative relax-
ation we follow the ideas developed by Klafter, Blumen, and
Shlesinger@15,16#. They considered a transfer of the excita-
tion of a donor molecule to an acceptor molecule in various
condensed media. The transfer takes place through many
parallel channels and gives the following relationship for this
cooperative type of relaxation:

c~ t !5)
j

$12c1c exp@2tW~Rj !#%, ~1!

wherec(t) is the relaxation function normalized to unity,t is
the current time,c is the concentration of donors in the sys-
tem,Rj is the distance between the donor and acceptor, lo-
cated on thej th site, andW(Rj ) is the microscopic relax-
ation rate of excitation transfer from the donor to acceptor at
distanceRj . The product extends over all structure sites ex-
cept for the origin.

In the Klafter-Blumen-Shlesinger~KBS! theory thec(t)
was estimated in the continuous medium approximation, i.e.,
when a site density function

r~R!5(
j

d~R2Rj ! ~2!

is taken asr(R)5const. TheW(R) was chosen in the form
of W(R);R2s, where s is the parameter of the donor-
acceptor interaction~usually s>6!. The case of small con-
centrationsc!1 was considered, i.e., when the donors do not
interact with each other. In such assumptions Klafter, Blu-
men, and Shlesinger obtained a KWW function exp@2~t/t!n#
for the cooperative relaxation, withn5D/s, whereD is the
dimension of the system.

It is pertinent to note here that the continuous medium
approximation of the KBS model is correct only in the case
when the concentration of donorsc is small and the majority
of acceptors are located at distancesRj that are much longer
than the minimum distanceR0 between the nearest donor and
acceptor, i.e.,Rj@R0 . It is relevant to bear in mind that for
the model the relaxation process can be described correctly
by the KWW function only in the limit of large times@15#.
Meanwhile, the concentration of the droplets forming dy-
namic fractal clusters is high in the case of microemulsions

in the percolation region. Thus the KBS theory might be
modified for describing the process of the charge transfer in
colliding droplets forming a cluster and giving rise to the
relaxation of the entire fluctuation dipole moment.

The normalized dipole correlation functionc(t) in the
microemulsion is associated with the relaxation of the entire
induced macroscopic fluctuation dipole momentM̄ (t) of the
sample unit volume, which is equal to the vectorial sum of
all the fluctuation dipole moments of droplets

c~ t !'
^M̄ ~0!•M̄ ~ t !&

^M̄ ~0!•M̄ ~0!&
, ~3!

where the angular brackets denote an ensemble average. The
velocity and laws governing the correlation function are di-
rectly related to the structural and kinetic properties of the
sample and characterize the macroscopic properties of the
system studied. The relaxation of the fluctuational dipole
moment of a droplet is related to the transfer of the excessive
charge ~excitation! within two colliding droplets from a
charged droplet~donor in the KBS model! to a neutral drop-
let ~acceptor!.

Let us consider that an elementary act of the excitation
transfer along the lengthL j is described by the microscopic
relaxation functiong(z/zj ), wherezj is a dimensional vari-
able, characterizing thej th stage of the self-similarity of the
considered fractal system, andz is an intensivevariable that
characterizes the system as a whole. We note that, in our
case,z coincides with the dimensionless timez5t/t. The
parametert represents the time needed for an excessive
charge to hop from one droplet to its nearest neighbor within
the cluster. The schematic view of the model is drawn in
Fig. 1.

Let us assume thatzj5aLj , whereL j is an ‘‘effective’’
length of a channel of the relaxation on thej th stage of
self-similarity anda is a coefficient of proportionality. In this
case, the fractal cluster relaxes as an entire indivisible unit
and does not correlate with neighbor clusters. For each stage

FIG. 1. Schematic picture of the excitation transfer via parallel
relaxation channels in the fractal cluster of droplets in the percolat-
ing microemulsion.nj is the number of droplets located along the
segment of lengthL j in the microemulsion. The time for a charge
hopping between droplets is given byt.
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of the self-similarityj , the time of relaxationt j5tzj is pro-
portional to the lengthL j . From fractal geometry@17,18#, L j
can be expressed as

L j5lkj , ~4a!

wherel is the minimal scale andk is a scaling factor~k.1!.
We assume that the total number of droplets located along
the segmentL j also obeys the scaling law

nj5n0p
j , ~4b!

wherep is the scaling factor~p.1! andn0 is the number of
the nearest neighbors near the selected droplet~i.e., j50!.

The relationship~1! can be generalized and expressed as

cN~z!5)
j50

N

@g~z/zj !#
nj5)

j50

N

@g~Zj j !#n0p
j
, ~5!

whereZ5t/alt; j51/k andN5~1/ln k!ln~LN/l!, whereLN
is the finite size of the fractal cluster. TheN refers to the last
stage of the self-similarity of the fractal cluster.

The estimations of the product~5! at various values ofj
andp ~j,1 andp.1! are given in the Appendix. The results
of the calculations are

cN~Z!/cN~0!5exp$2G~n!Zn1B~n!Z%, ~6!

where the parametersG~n! andB~n! are given by

G~n!5
n0

ln~1/j!
E
0

`

y2nUg8~y!

g~y!
Udy, ~7!

B~n!5
n0a1

ln~1/j!~12n!
«12n, ~8!

n5 ln p/ ln~1/j!, 0,n,1, «5jN!1. ~9!

The temporal boundariestmin andtmax of the applicability of
~6! for describing the cooperative relaxation are determined
by the expression

UA1n0
ḡ S 122

1

ln~1/j!~11n! D U! t

alt

!UF 2 ln~1/j!~22n!

n0~2a22a1
2!«22nG1/2U.

~10!

The parameterG~n! in ~7! depends on the microscopic relax-
ation functiong describing the elementary act of a charge
transfer and affects the macroscopic relaxation time
tM5tal@G~n!#21/n. B~n! is the correction for the KWW
function at large times. The parametern in ~6! characterizes
the cooperative dynamics and structure of the fractal cluster.
The lower temporal limit in~10! has an order of unity, i.e.,
tmin;alt. In its turn, the upper boundary in~10! correlates
to the time for the mean effective displacement of the charge
carrier to be of the order of the cluster size
tmax;t~LN/l)

12n/2.
It is easy to find the relationship between the exponentn

~n5 lnp/ lnk! and the fractal dimensionDf using an assump-

tion that the fractal is isotropic and has spherical symmetry.
The number of droplets that are located along the segment of
lengthL j on the j th step of the self-similarity isnj;pj . The
total number of the droplets in the cluster isS;nj

dE

;(pj )dE, where dE is Euclidean dimension~dE53!. The
similarity indexh, determining by how much the linear size
of the fractal is enlarged at stepj , is h;L j;kj . In this case,
we obtain the simple relationship betweenn and the fractal
dimensionDf @17,18#, asDf5 lnS/lnh53 j ln p/j ln k53n.

III. EXPERIMENT

We have studied an AOT-water-decane microemulsion
with a composition of 17.5%~AOT!, 21.3% water, and
61.2% decane~vol %!. The molar ratio of water to surfactant
has the valueW5@water#/@AOT#526.3. AOT and decane
were purchased from Sigma and used without further purifi-
cation. Deionized and bidistilled water was used throughout
the experiments.

The dielectric measurements were done by means of the
Dipole TDS Ltd. time domain dielectric spectroscopy
~TDDS! system TDS-2@19# in the frequency range 100
KHz–10 GHz. All samples were measured near the percola-
tion threshold~Tp527 °C! in a temperature range between
18 °C and 40 °C. The general principles of TDDS and a de-
tailed description of the setup and a procedure of our mea-
surements have been described elsewhere@1,19#. The data
treatment was carried out in terms of the dipole correlation
functions~3! directly in time domain. Because of the com-
plexity of the theoretical correlation function~6! and a large
number of the parameters that are involved in the fitting, the
least-squares-fitting procedure based on the simulated an-
nealing method was used. Details of the method are de-
scribed elsewhere@20#.

IV. RESULTS AND DISCUSSION

The dependence of the macroscopic dipole correlation
function c~t,T! for the AOT-water-decane microemulsion
versus time and temperature is presented in Fig. 2. One can
see that the decay depends essentially on the temperature and
provides a complex nonexponential behavior. Given the
complexity of the chemical makeup of the microemulsions,
there are many various sources of polarization in the system.
Depending on their nature, the dynamical processes can be
classified into three types.

The first type of relaxation process reflects some charac-
teristics inherent to the dynamics of the single droplet com-
ponents. Since our system is ionic, the dielectric relaxation
contributions of this type are expected to be related to the
various processes connected to interfacial polarization, coun-
terion polarization resulting from the movement of ions
and/or surfactant counterions relative to the droplets and
their organized clusters and interfaces. The collective mo-
tions of the anionic head groups of the surfactant molecules
at the interface with the water phase can also contribute to
the polarization of the system. The relaxation of the first type
can also be related to various components of the system con-
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taining active dipole groups, such as bound and free water.
The second and third types of relaxation processes char-

acterize the collective dynamics in the system and have a
cooperative nature. The dynamics of the second type may be
associated with the transfer of an excitation caused by the
transport of electrical charges within the clusters in the per-
colation region. The relaxation processes of the third type are
caused by rearrangements of the clusters and are associated
with various types of droplet and cluster motions, such as
translations, rotations, collisions, fusion, and fission.

The detailed analysis and estimations of the relaxation
time values@1# show the following hierarchy of the pro-
cesses on the time scale: the relaxation processes of the first
type, t1 , are the fastest processes, on the order of hundreds
of picoseconds when compared with the timetc needed to
‘‘explore’’ the cluster and with the rearrangement timetR .
The rearrangements occur at times of hundreds or/and thou-
sands of nanoseconds@9,11# and are considered to be the
slowest process. The intermediate process~t1,tc,tR!, relat-
ing to the cooperative transport of charge carriers along the
clusters, has the temporal window depending on temperature.
The minimal time boundaries are of the order of hundreds of
picoseconds, whereas the maximal time boundary has a
value of tens of nanoseconds in the beginning of the perco-
lation region and reaches 700 ns atTp .

All these contribute to a complex behavior of the dipole
correlation function~Fig. 2!. Schematically, the contribution
of these processes can be expressed as

C~ t !5C1~ t/t1!1C2~ t/tc!C3~ t/tR!. ~11!

Here the termC1(t/t1) is related to theshort-timeprocesses
of the relaxation.C2~t/tc! andC3~t/tR! are the contributions
of the collective processes of the second and the third type,
respectively. A charge on the droplet can propagate onto a

neighboring droplet only in the case of the successive event
for two droplets to be fused into one cluster. Thus the con-
tributions of the cooperative processes are presented as a
product in accordance with the probability theorems@21#.
We note that since the rearrangements are considered to be a
slow process when compared with the time needed to ex-
plore the cluster, i.e.,tR@tc . Therefore, within the experi-
mental time window, theC3~t/tR!'const. In addition, if
there is nonexponential behavior in the first term in~11!,
c1(t/t1);exp@2(t/t1)

b1#; then ~11! qualitatively coincides
with the expression@Eq. ~13! in Ref. @1##

c~ t !5A1 exp@2~ t/t1!
b1#1A2 exp@2~ t/t2!

b2#, ~12!

which we used@1# for fitting the measured correlation func-
tion ~3!. In turn, the first term contributes to the relaxation
only at small times. Therefore, the cooperative relaxation of
the second type, described by Eq.~6!, is the governing relax-
ation process in the intermediate temporal interval.

It is relevant to note that the long-time termC3~t/tR! can
also exhibit a stretched exponential behavior in the percola-
tion region@22# with the characteristic relaxation timetR of
the order of tens of milliseconds. Both the relaxation time
and the corresponding stretched exponent are temperature
dependent. These effects entail the existence of the anoma-
lous ~inhibited and enhanced! diffusion of charge carriers
within the percolation cluster as well as the cluster rearrange-
ments@10#.

Analyzing the dynamics and structure of the microemul-
sion in the percolation region, we began from the decay be-
havior of the correlation function~3!. Figure 3 shows the
temperature dependence of the effective relaxation time, de-
fined within the fractal parameters of the model as
teff5talG21/n, and corresponding to the macroscopic relax-
ation timetM of the KWW model. Theteff was determined
from the fitting of the model parametersa, t, p, n0, andN
@see~4!–~9!#. The value ofl was set equal to the average
diameter of the droplet of 100 Å. In the percolation threshold
Tp the teff exhibits a maximum and reflects the well-known
critical slowing downeffect @23#.

FIG. 2. Three-dimensional plot of the time and temperature de-
pendences of the macroscopic dipole correlation function for the
AOT-water-decane microemulsion.

FIG. 3. Temperature dependence of the macroscopic effective
relaxation timeteff .
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The stretched exponentn depends essentially on the tem-
perature~Fig. 4!. At 14 °C, then has a value of 0.5. How-
ever, when the temperature approaches the percolation
thresholdTp527 °C, then reaches its maximum, which is
equal to 0.8, with an error margin of less than 0.1. According
to the model, this rapid decay of the KWW function at the
percolation threshold reflects the increase of the cooperative
effect of the relaxation in the system. At temperatures above
Tp , the value of the stretched exponentn decreases and in-
dicates that the relaxation decelerates in the interval 28 °C–
34 °C. In the temperature range above 34 °C, the new in-
crease ofn with the rise in temperature suggests that the
system undergoes a structural modification. Such a change
implies a transformation fromL2 phase to lamellar@2# or to
bicontinuous phases@24,25#.

On the other hand, in supposition that the percolation
clusters have a spherical symmetry, our theoretical model
yields a very simple relationship between the stretched ex-
ponent n and the fractal dimension of the systemDf as
follows: Df53n. The temperature behavior of the fractal
dimension~Fig. 4! shows that below the percolation thresh-
old Df has a value of less than 2, which corresponds to a
system of small clusters dispersed in space and can be de-
scribed by the model of unbounded fractal sets withDf,2
@17,18#. At the percolation threshold the fractal dimension is
equal to 2.4, with an error margin of 0.2, satisfactorily con-
curring with the literature value of 2.5@26#. Above the per-
colation thresholdDf decreases, which can be explained by
reorganizations of the system with corresponding structural
changes. A structural modification of the system in the tem-
perature range above 34 °C and the appearance of more pro-
longed and/or ordered regions in the microemulsion lead to
the new observable increase ofDf .

The character of the fractal structure in the microemulsion
near the percolation threshold is monitored by the tempera-
ture behavior of the number of stages of self-similarity of the
clustersN and the scaling parametersk and p. From the
fitting it was found that the scaling parameterk is 6.760.9
and seems to be insensitive to the temperature. Thus the

character of the ‘‘linear’’ fractal similarity does not change
within the measured temperature region. On the other hand,
whenT approaches the percolation thresholdTp , Figs. 5 and
6 demonstrate a tendency of increasing values ofp andN
from their minimal values of 2.5 and 1 to values of 4.5 and
12 atTp , respectively. Such behavior testifies to the changes
of the type of self-similarity related to the droplet concentra-
tion and a growth of the maximal scale of the self-similarity.
After the percolation threshold the values ofp andN de-
crease to recover the tendency of forming a new structure.

The effective length of the clusters increases sharply and
diverges in the percolation threshold~Fig. 7! in accordance
with the percolation scaling lawLN;(T2Tp)

2n, wheren is
the geometrical exponentn'0.88 @23#. ~We note that this
symboln is accepted for the geometrical exponent in perco-
lation science and it should not be confused with the
stretched exponent discussed above in the KWW term.!
However, a big dispersion of the data obtained from the fit-

FIG. 4. Temperature dependence of the stretching parametern
~h! and the fractal dimensionDf ~s!.

FIG. 5. Temperature dependence of the scaling parameterp.

FIG. 6. Temperature dependence of the number of the maximal
self-similarity stageN.
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ting does not allow a precise estimation of a critical exponent
of this growth.

The typical number of dropletsS in the aggregates may
be estimated according to the relationship given by

S;~LN /ddrop!
1/Df ,

where ddrop is the diameter of the surfactant-coated water
droplet, estimated to be 100 Å. The temperature dependence
of the number of droplets in the typical fractal clusterS is
presented in Fig. 8.

The analysis of the temperature behavior of the calculated
parameters shows that at the onset of the percolation region
the droplets have a tendency to form small dynamic aggre-
gates consisting of 1065 droplets that are weakly bound one
to another. The characteristic length of such aggregates
changes in the interval, calculated to beLN;600–1000 Å.
The fractal dimension at these temperatures has a value less
than 2, indicating that aggregates are surrounded by empty
spaces, i.e., separated from one another. We note that each of
these aggregates participates in the relaxation as an indepen-
dent object with no correlation between them. In the perco-
lation threshold, these aggregates tend to form the large per-
colation cluster that participates in the cooperative relaxation
as a whole object.

V. CONCLUSION

The above dielectric relaxation study of the AOT-water-
decane microemulsion near the percolation temperature
threshold leads to the following general conclusions.

~i! The macroscopic law of relaxation of the KWW type
exp@2(t/tM)

n# is insensitive to the microscopic details of the
charge transport in a fractal medium for a wide class of the
microscopic relaxation functions satisfying the conditions
formulated in the Appendix.

~ii ! The stretched relaxation behavior of the KWW type in
time domain does not occur throughout the entire temporal
range, rather only in the time interval given by~10!. In order

to extend the initial temporal interval of the applicability of
the relaxation function the correction of the typeB(t/t) to
the termG~t/t!n was found in~6!.

~iii ! The characteristic dependences of the stretched expo-
nentn, the calculated fractal dimensionDf , the scaling pa-
rametersp and k as well as the calculated length of the
percolation clusterLN , and the number of droplets in the
clustersS clearly demonstrate the specific features of the
system near the percolation threshold. The suggested theory
satisfactorily describes the cooperative processes of the re-
laxation in microemulsions and can be expressed in terms of
the KWW relaxation function. The stretched exponentn, the
macroscopic relaxation timetM entering in the stretched ex-
ponential decay behavior exp@2(t/tM)

n# of the correlation
functions, and the scaling parameters of the modelk andp
are related to the structural parameters of the system.

~iv! At the temperatures below the percolation threshold
droplets have a tendency to form small dynamic aggregates
with the characteristic length of 600–1000 Å and consisting
of 5–15 droplets that are weakly bound to one another. Each
of these aggregates participates in the relaxation as an inde-
pendent object and there is no correlation between them. In
the vicinity of the percolation threshold~around 27 °C! these
aggregates tend to form the large percolation cluster that par-
ticipates in the cooperative relaxation as a whole object. A
continuation of this work may be the development of the
proposed model of the fractal cooperative relaxation by con-
sidering a size distribution of the percolation clusters as well
as taking into account the dynamics of the cluster rearrange-
ments.
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APPENDIX: ESTIMATION OF THE PRODUCT I „z…5) j50
N

†g„Zj j
…‡

n0p
i

In the case of 0,n,1 @n5ln(p)/ln(k)5ln(p)/ln~1/j!, j51/k#, by using the corrections given by Euler-Maclaurin formula
@27# we obtain

ln I ~z!5n0(
j51

N

pj ln@g~zj j !#

'H n0E
0

N

pu ln@g~zju!#du1
n0
2
ln@g~z!#J

5
n0
2
ln@g~z!#1

n0
ln~1/j!

znE
«z

z

y2n21 ln@g~y!#dy

5
n0
2
ln@g~z!#1

n0
ln~1/j!

znH E
0

`

~••• !dy2E
0

«z

~••• !dy2E
z

`

~••• !dyJ , ~A1!

where«5jN!1 for N@1 andj,1. Let us suppose that the microscopic relaxation functiong(y) has the asymptotic forms

g~y!5H 12a1y1a2y
21••• for y!1

ḡ1A1 /y1A2 /y
21••• for y@1

or
ḡ1A1 exp~2y!1A2 exp~22y!1••• for y@1.

~A2!
~A3a!

~A3b!

The functiong(y) satisfies the conditions asg~0!51, anddg(y)/dy,0 and 0,ḡ,1.
Let us show that if these conditions are imposed on the functiong(y) then the functionI (z) has a ‘‘universal’’ behavior for

the certaininterval of an intermediate asymptoticof the variablez,

zm!z!zM . ~A4!

The expansions for the ln[g(y)] that are used for calculation of the derivativedg(y)/dy and the valueszm andzM are given
by

ln@g~y!#55
2a1y1~a22a1

2/2!y21••• for y!1

2 ln@1/ḡ#1
A1

ḡ
1SA2

ḡ
2

A1
2

2ḡ2D 1

y2
1••• for y@1

or

2 ln@1/ḡ#1
A1

ḡ
exp~2y!1SA2

ḡ
2

A1
2

2ḡ2Dexp~22y!1••• for y@1.

~A5!

~A6a!

~A6b!

The values of two last integrals in~A1! are estimated by
using the expansions~A5!, and~A6a! or ~A6b!. These terms
are negligibly small in the interval of the intermediate
asymptotic~A4! and the result forI (z) in this case is given
by

I ~z!5S 1ḡD
2u

$exp$2G~n!zn1B~n!z%,

where

u5n0~1/211/d!, d5 ln~1/j!,

G~n!5
n0
d E

0

`

y2n21 ln@1/g~y!#dy5
n0
dn E

0

`

y2nUg8~y!

g~y!
Udy,

and

B~n!52
n0a1

d~12n!
«12n.

The boundaries of the interval of the intermediate asymptotic
~A4! for the microscopic correlation functions~A2! and
~A3a! are given by

UA1n0
ḡ S 122

1

d~11n! D !
t

alt
!UF 2d~22n!

n0~2a22a1
2!«22nG1/2U.

The expansion~A3b! leads to the interval of the intermediate
asymptotic

U lnSA1n0
2ḡ D U! t

alt
!UF 2d~22n!

n0~2a22a1
2!«22nG1/2U,

which is wider from the side of the smallz.
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It is relevant to bear in mind that for then falling out the
interval @0,1!, the integral in~A1! is divergent in the low
limit ~«z→0! for a1Þ0. We also note that if the microscopic

relaxation function is exponential, i.e.,g(y)5exp~2y!, then
the macroscopic functionI (z) also remains exponential,I (z)
5exp~2Az!, whereA5exp@2n0 ln( l /j)( j50
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